EE 435

Lecture 33

Switches

Current Steering DACs

Review from Last Lecture P-Strin DAB

If all components are ideal, performance of the R-string DAC is that of an ideal DAC!

Key Properties of R-String DAC

- One of the simplest DAC architectures
- R-string DAC is inherently monotone

Possible Limitations or Challenges

- Binary to Thermometer Decoder (BTTD) gets large for n large
- Logic delays in BTTD may degrade performance
- Matching of the resistors may not be perfect

- Local random variations
- Gradient effects
- How can switches be made?
- Lots of capacitance on output node

Review from Last Lecture

R-String DAC

Review from Last Lecture
 R-String DAC

iee journal of solid-state circuits, vol. 25, no. 6, december 1990

Note Dual Ladder is used!

A $10-\mathrm{b} 50-\mathrm{MHz}$ CMOS D/A Converter with $75-\Omega$ Buffer Abstracf-A $10-\mathrm{b} 50-\mathrm{MHz}$ digital-to-analog (D / A) converter is pre- sented which is based on a dual-ladder resistor string. This approach allows the linearity requirements to be met without the need for selection or trimming. The D/A ... Cited by 45 - Related articles - Web Search - All 2 versions
Cited by $51(4 / 5 / 10) \quad$ Cited by $109(4 / 5 / 16)$
Cited by 94 (4/6/14) Cited by 130 (4/24/19)
Cited by 133 (4/4/21) Cited by $140(4 / 6 / 22)$
Cited by 139 (4/5/24)

A 10-b $50-\mathrm{MHz}$ CMOS D / A Converter with 75- Ω Buffer

MARCEL J. M. PELGROM, member, IEEE

Abstract

A $10-\mathrm{b} 50-\mathrm{MHz}$ digital-to-analog (D/A) converter is presented which is based on a dual-ladder resistor string. This approach allows the linearity requirements to be met without the need for selection or trimming. The D / A decoding scheme reduces the glitch energy, and signal-dependent switch signals reduce high-frequency distortion. The output buffer allows driving $1 \mathrm{~V}_{\mathrm{pp}}$ to 75Ω. The chip consumes 65 mW at maximum clock frequency and a full-swing output signal. The device is processed in a standard $1.6-\mu \mathrm{m}$ CMOS process with a single $5-\mathrm{V}$ supply voltage.

Current-based circuits dump the complementary part of the signal current to ground: the power supply current is thereby twice the average signal current. If a two-sided terminated transmission line has to be fed by the highimpedance output of the current cell D/A converter, the current should be doubled to obtain the required output swing. In this case, the power supply current is four times the average signal current. A triple video D/A converter

Pelgrom Paper Assessment

This paper proposes a trimless $10-\mathrm{b} 50-\mathrm{MHz} \mathrm{D} / \mathrm{A}$ converter based on resistor strings. This D/A converter is well suited to be used together with nearly all reported A/D converters for high speed, as these also use resistor strings to obtain the reference for the comparators. The design improves on the standard single-resistor-string approach by using a dual-ladder architecture [3] in a matrix formation [4], [5]. Several measures have been taken in the ladder to reduce the distortion. The decoding aims at minimizing the number of transistors that switch. The on-chip output buffer allows driving $1 \mathrm{~V}_{\mathrm{pp}}$ to 75Ω. The inherent voltage output allows driving a two-sided terminated transmission line with a better power efficiency than a current cell D / A converter.

II. The Chip Design

A. The Ladder Structure

The voltage dependence and the mutual matching of large-area polysilicon resistors allow the design of a converter with high integral and differential linearity. Basically, the variation in the polysilicon resistance value is determined by its geometry variations: the length and width variations result in local mismatches and the thickness variation gives gradients. Equally sized MOS gates suffer in addition to charge variations in the threshold voltage. However, the design of the D/A converter with a single 1024-tap resistor ladder and sufficiently fast output settling requires tap resistors in the order of $6-10 \Omega$. The size of such resistors in conventional polysilicon technology is such that accurate resistor matching and consequently linearity become a problem.

Pelgrom Paper Assessment

The solution to this problem is the combination of a dual ladder [3] with a matrix organization Randy eiger Fig. 1 shows the ladder structure. The coarse ladder consists of two ladders each with 16 large-area resistors of 250Ω which are connected anti-parallel to eliminate the firstorder resistivity gradient. The coarse ladder determines 16 accurate tap voltages and is responsible for the integral linearity. A 1024-resistor fine ladder is arranged in a 32-by- 32 matrix, where every 64th tap is connected to the coarse-ladder taps. This arrangement allows the fineladder tap resistance to be increased to 75Ω without loss ot speed. The effect of wiring resistances has to be related to the $75-\Omega$ tap resistors and can therefore be neglected. There are only currents in the connections between the ladders in the case of ladder inequalities: this reduces the effect of contact resistance variance. The current density in the polysilicon is kept constant to avoid field-dependent nonlinearities. The coarse ladder is designed with polysilicon resistors in order to avoid voltage dependence of diffused resistors. The fine ladder is designed either in polysilicon or diffusion, depending on secondary effects in the process implementation.

Resistor Layout

Standard Series Layout of 64 resistors

Resistor Layout

Layout of 64 resistors with reduced gradient sensitivity

Resistor Layout

Antiparallel Layout of 32 resistors with Common Centroid
(Pelgrom used only 16 resistors)

Pelgrom Paper Assessment

Fig. 1. Resistor network for the video D/A converter.

Pelgrom Paper Assessment

In a basic ladder design consisting of one string of 1024 resistors, the output impedance of the structure varies with the selected position on the ladder and therefore with the applied code. The varying output impedance in combination with the load capacitance results in unequal output charging time and consequently signal distortion of high-frequency output signals. This source of varying impedance has been eliminated by means of a resistive output rail. The insert in Fig. 1 shows a part of two rows of the matrix. Small resistors are placed in the output rail which connects the switches together. These resistors can be chosen in such a way that any path from the beginning of the resistor row to the end of the output rail shows the same impedance, independent of the chosen switch. This eliminates position-dependent charging of the output rail

Pelgrom Paper Assessment

and therefore reduces the odd harmonics. In this design, partial cancellation was achieved by placing a unity resistor at the appropriate positions in the output rail. The use of unity resistors keeps the layout simple and does not require additional chip area.

The second source of the varying output impedance is the switch transistor. Usually its on-state gate voltage equals the positive power supply; the voltage on its source terminal, however, is position dependent. The turn-on voltage doubles from one end of the ladder to the other. In this design an additional supply ladder is placed on top of the signal ladders to keep the turn-on voltage of the switches more constant. Effectively the turn-on voltage of each switch transistor is made equal to the lowest turn-on voltage of a basic ladder D/A structure. Therefore there are no additional power supply constraints. For an easy implementation, the switches along each output rall have a common supply line. The variation in turn-on voltage is thereby reduced by a factor of 16 . The upper group of switches is fed from the power supply while each lower group is fed with a voltage lowered by one-sixteenth of the maximum signal swing. An additional advantage of this compensation is that the impedance of the switch can be in the order of the total ladder resistance: the switches reduce in width and consequently the clock feedthrough is also reduced.

B. The Digital Decoder

The core of the D/A converter is formed by the 32-by- 32 fine-resistor matrix. A switch and a two-input and gate ${ }^{1}$ are connected to each fine resistor to form a basic cell. Two rows of 32 cells each are arranged around one output rail to form one of the 16 sections of the $10-\mathrm{b}$ D/A converter (see Fig. 2). In operation one of the tap voltages of the fine ladder is switched to one of the 16 output rails of the matrix and subsequently to the input of the buffer. In order to select the proper switch, the $10-\mathrm{b}$ digital input word is split in two 5 -b words which are decoded by two sets of 5 -to- 32 decoders, as shown in Fig. 2. The 5 -to- 32 decoding is performed in two steps: a predecoder converts into ten lines that control 32 threeinput NOR gates of which one gate is activated. In this way minimum capacitive load is driven and maximum speed is achieved. The two decoders are placed on two sides of the matrix. The two sets of 32 decoded lines are latched by the main clock before running horizontally and verti-

Fig. 2. Block diagram of the D / A converter.

Another key paper for matching-critical circuits:

Matching_properties of MOS transistors

MJM Pelgrom, ACJ Duinmaijer... - IEEE Journal of solid ..., 1989 - ieeexplore.ieee.org
The matching properties of the threshold voltage, substrate factor, and current factor of MOS transistors have been analyzed and measured. Improvements to the existing theory are ...
i. Save 70 Cite Cited by 4355 Related articles All 26 versions

$$
2401 \text { Apr } 72014
$$

3452 Apr 182018
3528 Apr 172019
3745 Apr 102020
3913 Apr 42021
4062 Apr 62022
4355 Apr 52024
Second most cited paper in the IEEE Journal of Solid State Circuits
Most cited basic research paper in IEEE Journal of Solid State Circuits

Basic R-String DAC

Transfer

Latching Boolean Signal Can Reduce/Eliminate Logic Transients which Cause Distortion

Basic R-String DAC

For all b_{1} and $b_{2}, R_{U}+R_{L}=R$

- Another Segmented DAC structure
- Can be viewed as a "dither" DAC
- Often n_{1} is much smaller than n_{2}
- Dither can be used in other applications as well

Switches used extensively in data converters ! Switch Implementation Issues

Switch Implementation Issues

$\mathrm{V}_{\text {SIG }}$: Voltage on switch when ON

Switch Implementation Issues

$\mathrm{V}_{\mathrm{SIG}}$: Voltage on switch when ON

Switch Implementation Issues

Transmission Gate Impedance Can be Reasonably constant

Switch Implementation Issues

Equal-Sized Switches

Switch Implementation Issues

Equal-Sized Switches
High Threshold Voltages
Equal-Sized Switches
High Threshold Voltages

Even Transmission Gate Does Not Perform Well

Switch Implementation Issues

$$
\begin{aligned}
& \mathrm{V}_{\text {THn }}=2.0 \\
& \mathrm{~V}_{\text {THp }}=-2.0 \\
& \mathrm{~W}_{\mathrm{p}}=3 \mathrm{~W}_{\mathrm{n}} \\
& \mathrm{~L}_{\mathrm{p}}=L_{n} \\
& \mathrm{~V}_{\mathrm{DD}}=3.5 \mathrm{~V}
\end{aligned}
$$

Tough unlikely, this is what would happen if very high threshold devices were used

Gap where neither switch is working

Current Steering DACs

Current will be "steered" to a resistive load (on chip)
Output could be a current (user supplies load)
Basic Concept of Current Steering DACs

Current Steering DACs

What is important is the current generated, not whether it comes from a "current source"

Many potential current generator blocks, just require that all be ideally identical

Current Steering DACs

Inherently Insensitive to Nonlinearities in Switches and Resistors

- Termed "top plate switching"
- Thermometer coding
- Excellent DNL properties
- INL may be poor, typically near mid range
- INL is a random variable with variance approximately proportional to area $\sigma=\frac{A_{\text {PEL }}}{\sqrt{\mathrm{A}}}$
- Each additional bit of resolution requires a factor of 2 increase in area if same sized resistors are used
- Each additional bit of resolution requires another factor of 4 increase in area to maintain the same yield

Current Steering DACs

Inherently Insensitive to Nonlinearities in Switches and Resistors Smaller ON resistance and less phase-shift from clock edges

- Termed "bottom plate switching"
- Thermometer coded

Current Steering DACs

Transistor Implementation of Switches

Current Steering DACs

How should the op amp be compensated?
Assume k switches are on $0<\mathrm{k}<\mathrm{N}-1$

$$
\begin{array}{lrr}
\beta=\frac{\frac{R_{C E L L}}{k}}{\frac{R_{C E L L}}{k}+R_{F}}=\frac{R_{\text {CELL }}}{R_{\text {CELL }}+k R_{F}} & \text { If } \quad V_{\text {OUTFS }}=V_{\text {REF }} \quad R_{\text {CELL }}=N_{F} \\
0.5<\beta \leq 1
\end{array}
$$

How should the op amp be compensated?

$$
\beta=\frac{\frac{R_{C E L L}}{k}}{\frac{R_{C E L L}}{k}+R_{F}}=\frac{R_{C E L L}}{R_{C E L L}+k R_{F}}
$$

$V_{\text {OUTFS }}=V_{\text {REF }} \quad 0.5<\beta \leq 1$

Current Steering DACs

Problem?

Switch impedance
Code-dependent phase margin
Single-ended output
C_{P} Yes
Binary to Thermometer Decoder Yes
Op Amp Bandwidth

No
Yes
Yes

Yes

Current Steering DACs

$V_{\text {ReF }}$

C_{P} Compensation (steer rather than switch)

Differential Output

Stay Safe and Stay Healthy !

End of Lecture 33

